LHC stability predictions with DELPHI

N. Biancacci,
E. Métral, B. Salvant, D. Astapovych, L. R. Carver

HSC Meeting
Outline

1. Stabilizing octupole current at 450 GeV
2. Stabilizing octupole current at 6.5 TeV
3. DELPHI vs NHTVS at 6.5 TeV
We consider $\sigma_z = 9.7 \, \text{cm}$, $N_b = 10^{11} \, \text{ppb}$, $\varepsilon_n = 2 \, \mu\text{m}$.

One bunch case with damper at 50 turns (gain=0.02).

The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).

N.B.: No space charge is considered.
We consider $\sigma_z = 9.7 \text{ cm}$, $N_b = 10^{11}$ ppb, $\varepsilon_n = 2 \mu\text{m}$.

One bunch case without damper.

The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).

N.B.: No space charge is considered.
- We consider $\sigma_z = 9.7 \text{ cm}$, $N_b = 10^{11} \text{ ppb}$, $\varepsilon_n = 2 \mu m$.
- 2748 bunch case with damper at 50 turns (gain 0.02).
- The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).
- N.B.: No space charge is considered.
We consider $\sigma_z = 9.7 \, cm$, $N_b = 10^{11}$ ppb, $\varepsilon_n = 2 \, \mu m$.

2748 bunch case without damper.

The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).

N.B.: No space charge is considered.
We consider $\sigma_z = 7.5 \text{ cm}$, $N_b = 10^{11}$ ppb, $\varepsilon_n = 2 \mu m$.

- **One bunch** case with damper at 50 turns (gain=0.02).

- The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).

![Graphs showing stabilizing octupole current for parabolic and gaussian distributions](image)
- We consider $\sigma_z = 7.5\, cm$, $N_b = 10^{11}\, ppb$, $\varepsilon_n = 2\, \mu m$.
- One bunch case without damper.
- The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).
We consider $\sigma_z = 7.5\ cm$, $N_b = 10^{11}\ ppb$, $\varepsilon_n = 2\ \mu m$.

2748 bunches case with damper at 50 turns (gain=0.02).

The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).
• We consider $\sigma_z = 7.5 \text{ cm}$, $N_b = 10^{11} \text{ ppb}$, $\varepsilon_n = 2 \mu m$.

• 2748 bunches case without damper.

• The stabilizing octupole current is calculated for parabolic (cut at 6σ) and gaussian distribution for I_{oct} positive or negative (positive now in the LHC).

SD d0 plane x M2748 parabolic eps2um Nb1e11

SD d0 plane x M2748 gaussian eps2um Nb1e11
• We consider $\sigma_z = 7.5 \text{ cm}$, $N_b = 1.3 \cdot 10^{11}$ ppb, $\varepsilon_n = 1.5 \mu\text{m}$.
• One bunch case with damper 50 turns (gain=0.02).
• The stabilizing octupole current is calculated for gaussian distribution for I_{oct} positive.
• We consider $\sigma_z = 7.5 \, cm$, $N_b = 1.3 \cdot 10^{11} \, ppb$, $\epsilon_n = 1.5 \, \mu m$.

• One bunch case without damper.

• The stabilizing octupole current is calculated for gaussian distribution for I_{oct} positive.

SD d0 plane x M1 gaussian eps1.5um Nb1.3e11

\[g=0 \]
We consider $\sigma_z = 7.5 \, \text{cm}$, $N_b = 1.3 \cdot 10^{11} \, \text{ppb}$, $\varepsilon_n = 1.5 \, \mu\text{m}$.

- **One bunch case with damper** 50 turns (gain=0.02).
- The stabilizing octupole current is calculated for gaussian distribution for I_{oct} positive.