Space Charge Mitigation in PS with Hollow Bunches

MD210: Creation in the PSB
MD211: Behaviour in the PS

Steven Hancock, Adrian Oeftiger

HSC Section Meeting, CERN

30. May 2016
Goals of Study

motivation of hollow bunches

mitigate transverse space charge impact at PS injection
and possibly already during PSB ramp

course of action:

1. create hollow bunches in PSB (MD210)
2. transfer to PS (MD211)
3. investigate behaviour during PS RF gymnastics
4. quantify gains during PS injection plateau

⇒ show PS results first!

→ disclaimer: hollow distributions only mediocre quality
(unreliable C16 blow-up, disruptive PSB-PS synchro)
Compared Distributions in PS @C185

heavily flattened parabolic ("Gauss")

![Graphs showing distributions](image)

- RMS Emitt. = 0.293 eVs
 - BF = 0.396
 - 90% Emitt. = 1.12 eVs
 - Ne = 1.9E12
 - Mtchd Area = 1.41 eVs
 - Duration = 200 ns
 - RMS dp/p = 1.09E-3
 - fs0;1 = 611;471 Hz

hollow

![Graphs showing distributions](image)

- RMS Emitt. = 0.318 eVs
 - BF = 0.446
 - 90% Emitt. = 1.13 eVs
 - Ne = 1.7E12
 - Mtchd Area = 1.36 eVs
 - Duration = 195 ns
 - RMS dp/p = 1.12E-3
 - fs0;1 = 611;477 Hz

- same longitudinal matched 100% emittances (equal B_L)

 $\Rightarrow \sim 9\%$ larger r.m.s. emittances in hollow case

- system. higher intensities for Gauss (by 10%, cf. appendix)
Transverse Space Charge

transverse direct space charge:

\[\Delta Q_{x,y}(z) = -\frac{r_p \lambda(z)}{2\pi \beta^2 \gamma^3} \int ds \frac{\beta_{x,y}(s)}{\sigma_{x,y}(s) (\sigma_x(s) + \sigma_y(s))} \]

(1)

with (assuming a Gaussian in long. and horiz. plane)

\[\sigma_{x,y}(s) = \sqrt{\epsilon_{x,y} \beta_{x,y}(s) + D_{x,y}(s)^2 \delta_{\text{RMS}}^2} \]

(2)

\[\implies \text{mitigate space charge (lower max } \Delta Q_{x,y} \text{) by} \]

- line density depression \(\lambda_{\text{max}} \sim \lambda(z_{\text{centre}}) \)
- increase momentum spread \(\delta_{\text{RMS}} \)

PS Experiment Overview

single bunch (ring 3), LHC25 type, minimal changes

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>long. 100% emittance hollow</td>
<td>$\epsilon_{z,100%}$</td>
<td>1.43 ± 0.15 eV s</td>
</tr>
<tr>
<td>long. 100% emittance Gauss</td>
<td>$\epsilon_{z,100%}$</td>
<td>1.47 ± 0.11 eV s</td>
</tr>
<tr>
<td>PSB horizontal r.m.s. emittance</td>
<td>ϵ_x</td>
<td>≈ 2.23 mm mrad</td>
</tr>
<tr>
<td>PSB vertical r.m.s. emittance</td>
<td>ϵ_y</td>
<td>≈ 2.12 mm mrad</td>
</tr>
<tr>
<td>intensity hollow</td>
<td>N</td>
<td>$(1.661 \pm 0.053) \times 10^{12}$</td>
</tr>
<tr>
<td>intensity Gauss</td>
<td>N</td>
<td>$(1.835 \pm 0.034) \times 10^{12}$</td>
</tr>
<tr>
<td>injection plateau energy</td>
<td>E_{kin}</td>
<td>1.4 GeV</td>
</tr>
<tr>
<td>horizontal coh. dip. tune</td>
<td>Q_x</td>
<td>6.23</td>
</tr>
<tr>
<td>vertical coh. dip. tune</td>
<td>Q_y</td>
<td>6.22</td>
</tr>
<tr>
<td>synchrotron period ($V = 25$ kV)</td>
<td>$Q_{S,0}^{-1}$</td>
<td>725 turns</td>
</tr>
</tbody>
</table>

Table: relevant PS beam specifications at injection.
Measured Quantities

for each shot:

- coherent dipolar tune (via PR.BQS72)
- coherent quadrupolar tune (via PR.BQL72)
- intensities via BCT

→ references at C185 and C1350, for each reference time:
 - wire scans in horizontal and vertical plane
 - wall current monitor for tomography (⇒ long. phase space)

3 experiments scanning

1. bunch length \(V_{rf} = 25..80 \text{kV} \)
2. vertical tune \(Q_y = 6.22..6.08 \)
3. intensity (0.5 to 3.3 injected turns)
Bunch Length Scan

- Parabolic bunches
- Hollow bunches
- Parabolic fit with 1σ c.b.
- Hollow fit with 1σ c.b.
- Ideal Gaussian profile
- Ideal rectangular profile

$\lambda_{\text{max}}/N [10^{-2}/m] = \Rightarrow$ depression of maximal line density by factor 0.9

\Rightarrow could improve bunching factor even further towards (magenta) ideal rectangular distribution
Results from Bunch Length Scan I

<table>
<thead>
<tr>
<th>ΔQ_y</th>
<th>εfin y [mm mrad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>2.0</td>
</tr>
<tr>
<td>0.24</td>
<td>2.5</td>
</tr>
<tr>
<td>0.28</td>
<td>3.0</td>
</tr>
<tr>
<td>0.32</td>
<td>3.5</td>
</tr>
</tbody>
</table>

→ final core emittance for Gaussian space charge shift formulae (1), (2)

→ compares “as if” we had a Gaussian distribution
Results from Intensity Scan I

parabolic bunches
hollow bunches
parabolic fit with 1σ c.b.
hollow fit with 1σ c.b.

$2N/(\epsilon_{x}^{ini} + \epsilon_{y}^{ini}) \ [10^{17} \text{ p}/(\text{m rad})]$

→ emittance growth: ratio of core Gauss fits for C1350:C185
How to extract horizontal emittance?!
Horizontal Emittance Determination

- assume betatron distribution f_β to be Gaussian
- get momentum distribution f_δ via tomography / Abel transform from bunch shape monitor
- dispersive distribution $f_{\text{disp}}(x) = \frac{f_\delta(D_x \delta)}{|D_x|}$
- convolute Gaussian with f_{disp} to fit wire scan
 \[\Rightarrow \text{find Gaussian } \sigma_{x_\beta} \text{ in least squares approach} \]

\[
x = x_\beta + D_x \delta \quad \text{\(x_\beta, \delta\) indep.} \quad
\Rightarrow \quad f_x(x) = \int dx' \ f_\beta(x') f_{\text{disp}}(x - x') \\
\text{convolution of profiles}
\]

- $f_x \rightarrow$ wire scan profile, $f_{\text{disp}} \rightarrow$ dispersive distribution
Horizontal Emittance Determination

- Assume betatron distribution f_β to be Gaussian.
- Get momentum distribution f_δ via tomography / Abel transform from bunch shape monitor.
- Dispersive distribution $f_{\text{disp}}(x) = \frac{f_\delta(D_x\delta)}{|D_x|}$.
- Convolute Gaussian with f_{disp} to fit wire scan.
- Find Gaussian σ_{x_β} in least squares approach.

![Graph showing horizontal distribution measured: $D_x\delta$ distribution and input: Gaussian x_β distribution.](image-url)
Horizontal Emittance Determination

- assume betatron distribution f_β to be Gaussian
- get momentum distribution f_δ via tomography / Abel transform from bunch shape monitor
- dispersive distribution $f_{\text{disp}}(x) = \frac{f_\delta(D_x\delta)}{|D_x|}$
- convolute Gaussian with f_{disp} to fit wire scan

\Rightarrow find Gaussian σ_{x_β} in least squares approach
How to create hollow bunches?!
Tomograms Over Process

kinetic energy programme (PSB)

→ dipolar parametric resonance @C575

→ extremely reproducible results @C600

kinetic energy [GeV]
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
ctime [ms]
300 400 500 600 700 800

inj@C275 extr@C805

→

PSB C573 before excitation

PSB C591 after excitation

PSB C800 after synchro, before extraction

PS C171 after transfer

10 of 15 Adrian Oeftiger
SC Mitigation in PS with Hollow Bunches
Method: Excitation of Parametric Resonance

approach:

- exploit phase-loop to make bunch frame reference oscillate

\[
\phi_{ref}(t) = \phi_s + \hat{\phi}_{drive}\sin(\omega_{drive}t)
\]

\(\frac{\text{driven oscillation}}{}\)

- parametric resonance: \(\omega_{drive} \approx \omega_{s,0}\)

→ use a bit lower \(\omega_{drive} \approx 0.9\omega_{s,0}\) to drive outer particles, bucket non-linearity + space charge \(\Rightarrow \omega_s = \omega_s(J_{long})\)
\[\phi_{ref}(t) \text{ oscillates for 6 synchrotron periods at } \hat{\phi}_{drive} = 18^\circ \]

\[\Rightarrow \text{ single-harmonic bucket (cf. LLRF functions in appendix) } \]
PSB: Simulations

Simulations

(a) PSB C575, Gauss. start
(b) PSB C579, after $3.5T_S$
(c) PSB C583, after $6T_S$
(d) PSB C591, filamenting

Measurements

(a) PSB C575
(b) PSB C591

rel. momentum δ

position z
PS: Tripple Splitting of Hollow Distribution

Mountain diagram from C1830 to C1890, period of 185 turns

central bunch slightly hollow, others flat

any PS blow-ups before C1900 switched off – otherwise hollow distribution disrupted (cf. PSMD logbook 04.11.)
Conclusion

- hollow bunches release space charge constraints
 (by $\sim 20\%$ (for ϵ_y) even at mediocre quality)
- established *reliable, reproducible* and *minimalistic* hollow bunch creation method (reliable until C16 smoothing)

some interesting aspects:

- convolution approach to extract horizontal ϵ_x respects non-Gaussian longitudinal distribution
 ($25-35\%$ difference to usual Gaussian formula!)
- triple splitting of hollow bunches
- PSB: C16 blow-up and synchro. to PS need improvement
Thank you for your attention!

Acknowledgements:
Maria-Elena Angoletta, Hannes Bartosik, Michael Betz, Christian Carli, Heiko Damerau, Alan Findlay, Simone Gilardoni, Cedric Hernalsteens, Alexander Huschauer, Giovanni Iadarola, Michael Jaussi, Kevin Li, Giovanni Rumolo, Guido Sterbini, Raymond Wasef

special thanks to PSB / CPS OP teams for their support and kind patience!! ;-}
Different Intensities for Set-ups

PSB injection optimised for Gaussian set-up, missing for hollow set-up, same number of injected turns (2.6) lead to

\[N_{\text{Gauss}} = (1.835 \pm 0.034) \times 10^{12} \quad \text{vs.} \]
\[N_{\text{hollow}} = (1.661 \pm 0.053) \times 10^{12} \]

→ need to pay attention for intensity dependent plots!
→ easily correctable in follow-up experiments
Results from Bunch Length Scan II

hollow bunches feature less blow-up for given $N, \epsilon_{x,y}, B_L$
Results from Bunch Length Scan III

\[\Delta Q_{SC}^x \] for longit. Gauss

\[\Delta Q_{SC}^y \] for longit. Gauss

\[\epsilon_x \] @C1350 [umrad]

\[\epsilon_y \] @C1350 [umrad]

\[\Rightarrow \] final core emittance for Gaussian space charge shift formulae (1), (2)

\[\rightarrow \] compares “as if” we had a Gaussian distribution
Results from Vertical Tune Scan

normalised emittances C185

horizontal

vertical

g. emittance [mm mrad]
horizontal
hollow
gauss

vertical tune Q_y

normalised emittances C1350

horizontal

vertical

g. emittance [mm mrad]
horizontal
hollow
gauss

vertical tune Q_y
Results from Intensity Scan II

\[\begin{array}{c}
\text{intensity}
\end{array} \]

\[\begin{array}{c}
depletion \text{ factor}
\end{array} \]

\[\begin{array}{c}
\text{hollow}
\text{ gauss}
\end{array} \]

\[\Rightarrow \]

less depletion with increasing intensity due to *decoherence suppression* by longitudinal space charge (cf. appendix)

\[\rightarrow \]
deployment factor: ratio of maximal density by the zero-amplitude density in the bucket centre

(via angle-integrated phase space density along synchrotron amplitude)
synchronisation loop PSB-PS disrupts hollow distribution in LHC setting (left side)

less gain for the phase synchronisation and earlier timing is better (right side), still not optimal

(cf. PSBMD logbook 26.10.)
Figure: Depression of synchrotron tune by space charge. The 2D simulations consider a line density derivative model for longitudinal space charge during 100 synchrotron periods in the PSB ($\eta < 0$). All simulation runs start from the same initial Gaussian distribution. The theoretical formula is based on a parabolic profile and uses the final r.m.s. bunch length from the simulations.

(a) Depression of the linear synchrotron tune $Q_{s,lin}$ with increasing space charge. Note the increasing final bunch length $\sigma_{z,end}$ as the bucket becomes distorted and narrowed, the initial bunch gets more and more mismatched and filaments.

(b) The synchrotron tune depression inflicted by space charge superposes the inherent non-linearities for larger synchrotron amplitudes (in spatial units of z_{max}) towards the bucket separatrix. Here, for $\epsilon_{z,100\%} = 1.2\text{eV}\text{s}$, the central constant tune plateau gets enlarged, correspondingly there is almost no tune spread for a larger range of synchrotron amplitudes.
Figure: Tune footprints for both a Gaussian and a hollow distribution in the PS with the same beam characteristics (intensities, transverse emittances etc.)

(a) Gaussian footprint with $\Delta Q_y^{SC} \approx 0.31$.

(b) Hollow footprint for the same parameters.
optimize phase loop gain such that beam phase really follows sinusoidal signal (cf. PSBMD logbook 20.10. and 02.11.)
PSB: Phase Loop Gain Adjustments II

Phase loop gain (PSB)

- Low gain during excitation (after C575)
- High gain during subsequent blow-ups
- Carefully adjusted gain during PS synchronisation (synchro loop can disrupt distribution)
first blow-up (at C600) after excitation increases matched emittance and smooths distribution

second blow-up (at C700) reshapes to flat-topped profile
C16 modulation frequencies of each blow-up adjusted to resonate on different Hamiltonian contours / synchrotron amplitudes (cf. PSBMD logbook 04.11.)
C02 voltage programme (PSB)

C04 voltage programme (PSB)
PSB: Second-harmonic Relative Phase

relative phase C04 to C02 (PSB)

→ copied from MD_LHC25_EmitBlowUp_A to have constant synchrotron frequency across annulus synchrotron amplitudes during C700 blow-up, not followed up further but possibly interesting! (cf. PSBMD logbook 20.10.)