Impedance driven instabilities and coherent beam-beam effects in the early stage of the FCChh design studies

X. Buffat, O. Boine-Frankenheim, U. Niedermayer, F. Petrov, B. Salvant, D. Schulte
The Future Circular Hadron-Hadron Collider

Impedance driven instabilities
- Design strategy
- Impedance model
- Instability model

Coherent beam-beam effects
- Orbit
- Dynamic β

Conclusion
The FCChh
The FCChh
FCChh parameters and challenges

- Tighter collimation constraints than the LHC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>3 – 50 [TeV]</td>
</tr>
<tr>
<td>Circumference</td>
<td>100 [km]</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>10^{11}</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>10600</td>
</tr>
<tr>
<td>Stored energy</td>
<td>8.4 [GJ]</td>
</tr>
<tr>
<td>Synchrotron radiation power</td>
<td>2.4 [MW]</td>
</tr>
<tr>
<td>Bunch length</td>
<td>8 [cm]</td>
</tr>
<tr>
<td>$\Delta p / p$</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Q_s</td>
<td>$2.5 – 1.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Average β</td>
<td>130 [m]</td>
</tr>
</tbody>
</table>
FCChh parameters and challenges

- Tighter collimation constraints than the LHC
- Beam screen design which allows to evacuate >20 W/m

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>3 – 50 [TeV]</td>
</tr>
<tr>
<td>Circumference</td>
<td>100 [km]</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>10^{11}</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>10600</td>
</tr>
<tr>
<td>Stored energy</td>
<td>8.4 [GJ]</td>
</tr>
<tr>
<td>Synchrotron radiation power</td>
<td>2.4 [MW]</td>
</tr>
<tr>
<td>Bunch length</td>
<td>8 [cm]</td>
</tr>
<tr>
<td>$\Delta p / p$</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Q_s</td>
<td>2.5 – 1.3 10^{-3}</td>
</tr>
<tr>
<td>Average β</td>
<td>130 [m]</td>
</tr>
</tbody>
</table>
- Tighter collimation constraints than the LHC
- Beam screen design which allows to evacuate >20 W/m
- Large circumference → low frequency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>3 – 50 [TeV]</td>
</tr>
<tr>
<td>Circumference</td>
<td>100 [km]</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>10^{11}</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>10600</td>
</tr>
<tr>
<td>Stored energy</td>
<td>8.4 [GJ]</td>
</tr>
<tr>
<td>Synchrotron radiation power</td>
<td>2.4 [MW]</td>
</tr>
<tr>
<td>Bunch length</td>
<td>8 [cm]</td>
</tr>
<tr>
<td>$\Delta p / p$</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Q_s</td>
<td>$2.5 – 1.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Average β</td>
<td>130 [m]</td>
</tr>
</tbody>
</table>
FCChh parameters and challenges

- Tighter collimation constraints than the LHC
- Beam screen design which allows to evacuate >20 W/m
- Large circumference → low frequency
- LHC-like longitudinal parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>3 – 50 [TeV]</td>
</tr>
<tr>
<td>Circumference</td>
<td>100 [km]</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>10^{11}</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>10600</td>
</tr>
<tr>
<td>Stored energy</td>
<td>8.4 [GJ]</td>
</tr>
<tr>
<td>Synchrotron radiation power</td>
<td>2.4 [MW]</td>
</tr>
<tr>
<td>Bunch length</td>
<td>8 [cm]</td>
</tr>
<tr>
<td>$\Delta p / p$</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Q_s</td>
<td>$2.5 – 1.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Average β</td>
<td>130 [m]</td>
</tr>
</tbody>
</table>
Tighter collimation constraints than the LHC

Beam screen design which allows to evacuate >20 W/m

Large circumference → low frequency

LHC-like longitudinal parameters

Twice larger average β

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>$3 - 50$ [TeV]</td>
</tr>
<tr>
<td>Circumference</td>
<td>100 [km]</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>10^{11}</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>10600</td>
</tr>
<tr>
<td>Stored energy</td>
<td>8.4 [GJ]</td>
</tr>
<tr>
<td>Synchrotron radiation power</td>
<td>2.4 [MW]</td>
</tr>
<tr>
<td>Bunch length</td>
<td>8 [cm]</td>
</tr>
<tr>
<td>$\Delta p / p$</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Q_s</td>
<td>$2.5 - 1.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Average β</td>
<td>130 [m]</td>
</tr>
</tbody>
</table>
Tentative strategy concerning coherent stability

- Estimate the impedance of the main contributors and define tolerances
- Make early design choices based on TMCI and coupled bunch instability
- Extend results with detailed model (i.e. including transverse feedback, non-zero chromaticity, Landau damping)
 - Stabilization of high order head-tail mode with Landau damping?
 - e-cloud?
- Study other mitigation techniques
Resistive wall impedance of the beam screen (N. Mounet)

- Most critical at injection
- Assumed round pipe made of copper at 50K (0.3 mm coating required)
 - The current design (15 mm) is at the edge of stability with a 50 turns transverse feedback
 - Initial design with 12 mm seemed out of reach

https://indico.cern.ch/event/289331/contribution/2/material/slides/0.pdf
Pumping holes

- Broadband impedance with $f_c = f_{\text{pipe}}$ and:

$$\frac{R}{Q} = 2 Z_0 \eta \left(\frac{\alpha_e + \alpha_m}{\pi A b^3}\right) \propto \frac{1}{b^4}$$

- Discrepancies between Kurenoy's theory and simulations (factor ~ 4) is being investigated**

- Due to the lower revolution frequency and to the smaller gap, the effect on the TMCI is ~ 8 times stronger than in the LHC

*S. Kurenoy, Impedance issues for the LHC beam screen, Part. Acc. 50, 167-175, 1995

**F. Riminucci@HSC meeting 14-9-15
Pumping holes

- Broadband impedance with $f_c = f_{pipe}$ and:
 \[
 \frac{R}{Q} = 2 Z_0 \eta \left(\frac{\alpha_e + \alpha_m}{\pi Ab^3} \right) \propto \frac{1}{b^4}
 \]

- Discrepancies between Kurenoy's theory and simulations (factor ~4) is being investigated

- Due to the lower revolution frequency and to the smaller gap, the effect on the TMCI is ~8 times stronger than in the LHC.

 → A beam screen design without holes (or at least fewer holes) would be beneficial.

*S. Kurenoy, Impedance issues for the LHC beam screen, Part. Acc. 50, 167-175, 1995

**F. Riminucci@HSC meeting 14-9-15
Beam screen design
(R. Kersevan)

- Longitudinal slit with anti-chamber to extract synchrotron power
Beam screen design
(R. Kersevan)

- Longitudinal slit with anti-chamber to extract synchrotron power
 - Avoids outgassing in the beam chamber
 → Fewer pumping holes required
Beam screen design
(R. Kersevan)

- Longitudinal slit with anti-chamber to extract synchrotron power
 - Avoids outgassing in the beam chamber
 → Fewer pumping holes required
- Symmetrizing the design allows to shield the pumping holes

https://indico.cern.ch/event/380420/contribution/2/material/slides/0.pptx
2D simulations show a negligible effect of the anti-chambers

3D simulations are at the edge of computing capabilities

→ More studies required with CST as well as other codes (GdfidL, ACE3P, ECHO3D)
- **Scaled LHC design**:
 - Identical collimator length, material and physical gaps
 - Adiabatic damping is compensated with larger β functions to obtain identical normalized gaps
 - The impedance is identical as the LHC, but the effect on the beam is smaller due to the β functions
Summary

- Current impedance model of the FCChh includes:
 - The beam screen (Effect of pumping holes / slit to be fully understood → numerical challenges)
 - The collimators (Similar to the LHC's → follow up of new collimator designs / material)

- Missing components:
 - Interconnects (photon absorbers ?)
 - Injection, extraction kickers and protection devices
 - RF / crab cavities
 - Beam instrumentation
 - ...
Effective impedance of the beam screen

- Sacherer sum for the effective impedance

\[Z_0 = \frac{\sum_{p=-\infty}^{\infty} H_0(\omega_p) Z(\omega_p)}{\sum_{p=-\infty}^{\infty} H_0(\omega_p)} \approx \frac{\int_{-\infty}^{\infty} H_0(\omega_p) Z(\omega_p) \, dp}{\int_{-\infty}^{\infty} H_0(\omega_p) \, dp} \]

- Approx. with integrals
 (→ assumes that there are no trapped modes)

\[\omega_p = \omega_{rev} (Q_\beta + p) \]
Effective impedance of the beam screen

- Sacherer sum for the effective impedance
 - Approx. with integrals (→ assumes that there are no trapped modes)
 - Thick wall formula

\[Z_0 = \frac{\sum_{p=-\infty}^{\infty} H_0(\omega_p)Z(\omega_p)}{\sum_{p=-\infty}^{\infty} H_0(\omega_p)} \approx \frac{\int_{-\infty}^{\infty} H_0(\omega_p)Z(\omega_p)dp}{\int_{-\infty}^{\infty} H_0(\omega_p)dp} \]

\[\omega_p = \omega_{rev}(Q_\beta + p) \]

\[Z_{TW} = (\text{sign}(\omega) + i) \frac{LZ_0}{2\pi b^3} \sqrt{\frac{2}{\mu_0 \sigma_{DC}\omega}} \]

\[\varepsilon_r = \mu_r = 1 \]
Effective impedance of the beam screen

- Sacherer sum for the effective impedance
 - Approx. with integrals (→ assumes that there are no trapped modes)
 - Thick wall formula
 - Approx. mode 0 power spectrum

\[
Z_0 = \frac{\sum_{p=-\infty}^{\infty} H_0(\omega_p)Z(\omega_p)}{\sum_{p=-\infty}^{\infty} H_0(\omega_p)} \approx \frac{\int_{-\infty}^{\infty} H_0(\omega_p)Z(\omega_p)dp}{\int_{-\infty}^{\infty} H_0(\omega_p)dp}
\]

\[
\omega_p = \omega_{\text{rev}}(Q_\beta + p)
\]

\[
Z_{TW} = (\text{sign}(\omega) + i) \frac{LZ_0}{2\pi b^3} \sqrt{\frac{2}{\mu_0 \sigma_{DC} \omega}}
\]

** εᵣ = μᵣ = 1
Effective impedance of the beam screen

- Sacherer sum for the effective impedance
 - Approx. with integrals (assumes that there are no trapped modes)
 - Thick wall formula
 - Approx. mode 0 power spectrum

\[Z_0 = \sum_{p=-\infty}^{\infty} \frac{H_0(\omega_p)Z(\omega_p)}{p} \approx \frac{\int_{-\infty}^{\infty} H_0(\omega_p)Z(\omega_p)dp}{\int_{-\infty}^{\infty} H_0(\omega_p)dp} \]

\[\omega_p = \omega_{rev}(Q_\beta + p) \]

\[Z_{TW} = (\text{sign}(\omega) + i) \frac{LZ_0}{2\pi b^3} \sqrt{\frac{2}{\mu_0 \sigma_{DC} \omega}} \]

\[Z_{TW,0} \approx i \frac{4LZ_0}{2\pi b^3} \sqrt{\frac{8\sigma_z}{3\pi c \mu_0 \sigma_{DC}}} \]

\(\epsilon_r = \mu_r = 1 \)
\[\Delta Q_{TW,0} = -\frac{e^2 N}{16\pi m_p \gamma Q_x \omega_{rev} \sigma_z} Z_{TW,0} \]

\[Q_s = \sqrt{\frac{\eta hV}{2\pi E}} \approx \frac{1}{Q_x} \sqrt{\frac{hV}{2\pi E}} \]
\[\Delta Q_{TW,0} = -\frac{e^2 N}{16\pi m_p \gamma Q_x \omega_{rev} \sigma_z} Z_{TW,0} \]

\[Q_s = \sqrt{\frac{\eta h V}{2\pi E}} \approx \frac{1}{Q_x} \sqrt{\frac{h V}{2\pi E}} \]

- Assume TMCI due to mode 0 reaching \(-Q_s\)

\[N_{TMCI} \approx 1.1 \cdot 10^{12} \]
\[\Delta Q_{TW,0} = -\frac{e^2 N}{16\pi m_p \gamma Q_x \omega_{rev} \sigma_z} Z_{TW,0} \]

\[Q_s = \sqrt{\frac{\eta hV}{2\pi E}} \approx \frac{1}{Q_x} \sqrt{\frac{hV}{2\pi E}} \]

- Assume TMCI due to mode 0 reaching \(-Q_s\)

\[N_{TMCI} \sim 1.1 \cdot 10^{12} \]

- Agreement within 20% with tracking simulation (COMBI)

- Positive shift of mode 1
Coupled bunch instability

Beam screen

\[\text{Re}(Z_{TW,0,n_{CB}}) = \text{Re} \left(\sum_{p=-\infty}^{\infty} \frac{H_0(\omega_p) Z_{TW}(\omega_p)}{\sum_{p=-\infty}^{\infty} H_0(\omega_p)} \right) \approx \frac{n_b L Z_0}{2\pi \omega_L b^3} \sqrt{\frac{2\omega_{rev}}{\mu_0 \sigma_{DC}(Q_\beta + n_{CB})}} \]

\[\frac{1}{\tau_{CB}} = \frac{e^2 Z_0}{6\pi m_p} \sqrt{\frac{2}{\mu_0 \gamma b^3}} \sqrt{\frac{1}{\sigma_{DC} \omega_0 Q_\beta}} \]
Coupled bunch instability

Beam screen

\[\text{Re}(Z_{TW,0,n_{CB}}) = \text{Re} \left(\sum_{p=-\infty}^{\infty} \frac{H_0(\omega_p)Z_{TW}(\omega_p)}{\sum_{p=-\infty}^{\infty} H_0(\omega_p)} \right) \approx \frac{n_b L Z_0}{2\pi \omega_L b^3} \sqrt{\frac{2\omega_{rev}}{\mu_0 \sigma_{DC} (Q_\beta + n_{CB})}} \]

\[\frac{1}{\tau_{CB}} = \frac{e^2 Z_0}{6\pi m_p} \sqrt{\frac{2}{\mu_0 \gamma b^3}} \sqrt{\frac{1}{\sigma_{DC} \omega_0 Q_\beta}} \]

\[\rightarrow \text{100 turns rise time in current design at 3.3 TeV} \]

- Study case (not nominal FCChh) to compare the formula with tracking simulation \(\rightarrow \) about 15\% difference

\[\text{Rise time : 2426 turn} \]

![Graph showing vertical amplitude vs bunch number and turn number.](image)
Summary

\[\frac{1}{N_{TMCI}} = \sum \frac{1}{N_{TMCI,i}} \]

Beam screen:
\[N_{TMCI} = \frac{4\pi^3 c m_p \sqrt{3c \mu_0 b^3 \gamma}}{Z_0 e^2 L^2} \sqrt{\frac{\sigma_{DC} h V \sigma_z}{E}} \]

Each collimator:
\[N_{TMCI} = \frac{4m_p \sqrt{3c}}{Y e^2} \sqrt{\frac{2\mu_0 \gamma b^3}{Q_x \beta_c L_c}} \sqrt{\frac{\sigma_z h V \sigma_{DC}}{E}} \]

Broad band:
\[N_{TMCI} = \frac{16\pi m_p}{\sqrt{2\pi e^2}} \frac{\gamma \omega_{rev} \sigma_z}{R} \sqrt{\frac{h V}{2E}} \]

- Prediction with the test case (Beam screen + rough collimator model + holes): \(N_{TMCI} \sim 3 \cdot 10^{11} \)
\[\frac{1}{N_{TMCI}} = \sum \frac{1}{N_{TMCI,i}} \]

Beam screen:

\[N_{TMCI} = \frac{4\pi^3 c m_p \sqrt{3c\mu_0} b^3 \gamma}{Z_0 e^2 L^2 \sqrt{\frac{\sigma_{DC} h V \sigma_z}{E}}} \]

Each collimator:

\[N_{TMCI} = \frac{4m_p}{Y e^2} \sqrt{\frac{3c}{2\mu_0 Q_x \beta_c L_c}} \sqrt{\frac{\sigma_z h V \sigma_{DC}}{E}} \]

Broad band:

\[N_{TMCI} = \frac{16\pi m_p}{\sqrt{2\pi e^2}} \frac{\gamma \omega_{rev} \sigma_z}{R} \sqrt{\frac{h V}{2E}} \]

- Prediction with the test case (Beam screen + rough collimator model + holes): \(N_{TMCI} \sim 3 \cdot 10^{11} \)

- \(N_{TMCI} \sim 10^{12} \) without holes

- The most unstable coupled bunch mode is the slowest, driven by the beam screen impedance:

\[\frac{1}{\tau_{CB}} = \frac{e^2 Z_0}{6\pi m_p} \sqrt{\frac{2}{\mu_0 \gamma b^3}} n_b N \beta_{avg} \sqrt{\frac{1}{\sigma_{DC} \omega_0 Q_\beta}} \]

- The feedback bandwidth needs to be set according to the stability of higher frequency coupled bunch mode driven by both the beam screen and the collimators' impedances
Orbit effect

- ~3 times more long range per IP than in the LHC
- The normalized separation is increased to keep a similar dynamic aperture (~d⁻² – d⁻⁴)

→ Orbit effect is enhanced

\[
\text{orbit spread} \propto \frac{N_{LR}N_{r0}}{\epsilon d} \frac{1}{\sin(\pi Q_0)}
\]
Dynamic β

$$\max \left(\frac{\Delta \beta}{\beta} \right) = \frac{2\pi \xi}{\sin(2\pi Q_0)}$$

- Exploring high head-on beam-beam tune shift
- Effect on collimation / machine protection?
- The effects of multiple IPs do not add linearly
 → Effect of the phase advance between IPs (P.G. Jorge)
 → Local compensation (L. Medrano)

HL-LHC synergetic...
- The turn-by-turn orbit jitter at the IP close to the betatron frequencies results in emittance growth through decoherence.

- It should be roughly $\sim 10^{-4} \sigma$ to keep the emittance growth $< 10\%$/h.

- Rough estimations of the main contributors (field ripple, ground motion) seem at the edge with nowadays technology → Detailed studies required.

- Single particle diffusion mechanisms were not considered.

TBC

<table>
<thead>
<tr>
<th>Circuit</th>
<th>$\Delta [10^{-5}]$</th>
<th>ϵ_{init}</th>
<th>ϵ_{equ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main dip.</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Separation dip.</td>
<td>1</td>
<td>8 (16)</td>
<td></td>
</tr>
<tr>
<td>Main quad.</td>
<td>0.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Triplet</td>
<td>0.2</td>
<td>1.5 (3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.4</td>
<td>11 (18)</td>
<td></td>
</tr>
</tbody>
</table>

$\beta^*=1.1 \ (\beta^*=0.3)$
The impedance model of the FCChh is under development

- The details of the impedance of some components (holes, slit, …) are critical and their evaluation is at the edge of the computing capabilities (Use other models ?)
- The impedance of several elements need to be evaluated

Simple models show that the beam stability is a limiting factor at injection

- Need detailed studies including the chromaticity, the transverse feedback and Landau damping
- An octupole scheme is being designed (V. Kornilov)

- Orbit effects and dynamic optics distortion due to beam-beam interactions are more important than in the LHC
- Noise sources have to be studied in details, they should not compromise effect of the synchrotron damping
Parameter Table

Table 1: FCC-hh baseline parameters compared to LHC, HE-LHC and HL-LHC parameters.

<table>
<thead>
<tr>
<th>Main parameters and geometrical aspects</th>
<th>LHC (Design)</th>
<th>HL-LHC</th>
<th>FCC-hh baseline</th>
<th>FCC-hh ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.m. Energy [TeV]</td>
<td>14</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circumference C [km]</td>
<td>26.7</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipole field [T]</td>
<td>8.33</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc filling factor</td>
<td>0.79</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight sections</td>
<td>8 x 528 m</td>
<td>6 x 1400 m + 2 x 4200 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of IPs</td>
<td>2 + 2</td>
<td>2 + 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection energy [TeV]</td>
<td>0.45</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physics performance and beam parameters

Peak luminosity [10^{36} cm^{-2} s^{-1}]	1.0	5.0	5.0	< 30.0
Optimum run time [h]	15.2	10.2	12.1	
Optimum average integrated lumi / day [fb^-1]	0.47	2.8	2.2	
Assumed turnaround time [h]	5	4		
Overall operation cycle [h]	17.4			
Peak no. of inelastic events / crossing at				
- 25 ns spacing	27	135 (lev.)	171	1026
- 5 ns spacing	34	194		
Total / inelastic cross section S_{inel} [mbarn]	111 / 85	153 / 108		
Luminous region RMS length [cm]	5.7	5.7		
Init. beam lifetime due to burn off [h]	45	15.4	19.1	4.75

Beam parameters

Number of bunches π at	2808	10600	53000
Number of π at	1.15	2.2	1.0
- 25 ns			
- 5 ns			

- 5 ns
- Nominal transverse normalized emittance [\mu m]
 - 25 ns | 3.75 | 2.5 | 2.2 |
 - 5 ns | 2.2 | 0.44| 0.44|
- Number of IPs contributing to b-b tune shift | 3 | 2 | 2 |
- Maximum total b-b tune shift | 0.01 | 0.015 | 0.01 |
- Beam current [A] | 0.584 | 1.12 | 0.5 |
- RMS bunch length [cm] | 7.55 | 8 |
- IP beta function [m] | 0.55 | 0.15 (min) | 1.1 |
- RMS IP spot size [\mu m]
 - 25 ns | 16.7 | 7.1 (min) | 6.8 |
 - 5 ns | 3 | 1.6 | |
- Full crossing angle [mrad] | 285 | 590 | 91 |
- 175** | 175** |

Other beam and machine parameters

- Stored energy per beam [GJ] | 0.392 | 0.694 | 8.4 |
- SR power per ring [MW] | 0.0036 | 0.0073 | 2.4 |
- Arc SR heat load [W/\text{aperture}] | 0.17 | 0.33 | 28.4 |
- Energy loss per turn [MeV] | 0.0067 | 4.6 |
- Critical photon energy [keV] | 0.044 | 4.3 |
- Longitudinal emittance damping time [h] | 12.9 | 0.5 |
- Horizontal emittance damping time [h] | 25.8 | 1.0 |
- Dipole coil aperture [\text{mm}] | 36 | |
- Beam half aperture [cm] | 2 | 1.3 |

*Depending on the operational scenario, the peak luminosity might increase to larger values during the run. **The crossing angle will be compensated using the crab crossing scheme.
Rough estimation of the effect of field ripple

- Assume that the noise arises from the power converter voltage ripple

\[
\frac{\delta B(\omega)}{B_0} = \frac{\delta I(\omega)}{B_0} = \frac{\delta V_0}{V_0} \frac{1}{\omega L_c}
\]

- Sum over main contributors (coherently for elements on the same circuit)
 - Main / separation dipole
 - Triplet with nominal Xing angle
 - Arc quad with 1mm RMS orbit

- Normalize to the beam divergence

\[
\delta_c(\omega) = \frac{\delta V_{PC}}{V_0} \frac{1}{\omega L_c} \sum_i k_{0,i}
\]

\[
\Delta(\omega) = \frac{\delta V_{PC}}{V_0} \frac{1}{\omega L_c} \sqrt{\frac{\gamma r}{\epsilon_n}} \sum_i k_{0,i} \sqrt{\beta_i}
\]

- Sum over harmonics of the revolution frequency

\[
\Delta = \Delta(\omega_{rev}) \sum_{n=0}^{\infty} \frac{1}{(n + Q_\beta)^2} \approx \Delta(\omega_{rev}) \sqrt{\frac{1}{Q_\beta} + \frac{\pi^2}{6}}
\]
Similar approach, using the ATL law to approximate the power spectrum at high frequency:

\[
\rho(f) = \frac{B}{2f^4}
\]