Interaction Vertex Imaging (IVI) for carbon ion therapy monitoring

a feasibility study

E. Testa1, D. Dauvergne1, G. Dedes1, N. Freud2, P. Henriquet1, J. Krimmer1, J.M. Létang2, C. Ray1, M.-H. Richard1,2, F. Sauli3

1IPNL, France 2CREATIS, France 3TERA Foundation, Italy

ICTR-PHE 2012
Geneva, Switzerland
Outline

1. Ion range verification
2. Interaction Vertex Imaging principles
3. Simulation tools
4. Results
Rationale

Ideal control

- 3D real-time dose control

Current challenge

- 1D real-time ion-range control
 - an energy-slice basis
 - or on a pencil-beam basis

Proton / carbon therapy

- Beam intensities
- Nuclear reactions

Typical ^{12}C therapy treatment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>1 GyE</td>
</tr>
<tr>
<td>Irradiated volume</td>
<td>120 cm3</td>
</tr>
<tr>
<td>No. of energy slices</td>
<td>39</td>
</tr>
<tr>
<td>No. of C ions</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7×10^8</td>
</tr>
<tr>
<td>AVG per energy slice</td>
<td>$\sim 2 \times 10^7$</td>
</tr>
<tr>
<td>AVG per pencil beam</td>
<td>$\sim 10^5$</td>
</tr>
</tbody>
</table>

M. Kraemer et al. 2000
Physical principles

Correlation between
- ion range
- nuclear reaction depth profile

Two kinds of radiations of relevance
- β^+ activity
- Prompt radiations (γ, p)

Measurement of β^+ activity
(200 MeV/u 12C in PMMA)

Simulation of prompt radiations
95 MeV/u 12C, PMMA target, GEANT4.9.4
5 modalities

β^+ activity (PET)

- Clinical use
 - off-beam (HIT, NIRS...)
 - in-beam (GSI)

- Current research
 - Radioactive beams
 - TOF

Prompt radiations

- Collimated camera
- Slit-hole camera
- Compton camera
- Interaction Vertex Imaging
Principle and rationale

Principle

- Detection of secondary protons emitted from incident ions
- Reconstruction of nuclear reaction positions (“vertex”)
- Comparison of measured and simulated distributions of “reconstructed” vertices

Rationale

- ++ Intrinsic detection efficiency ~ 1
- ++ “High” proton emission yield with ^{12}C ion:
 \[\text{Proton yield} \sim \gamma\text{-ray yield} \sim \frac{10^{-1}}{\text{incident} \ 12\text{C}}\]
- - - Attenuation and straggling
 in particular: low-energy protons emitted at the end of incident ion ranges
2 imaging techniques

Imaging techniques

- **“Single-proton” imaging (SP-IVI)**

 Intersection of a secondary-proton trajectory with the incident-ion trajectory

- **“Double-proton” imaging (DP-IVI)**

 Intersection of 2 secondary-proton trajectories

Detectors

- **Tracker + beam hodoscope**
 (in coincidence)
Simulated setups

Tool

- Geant4 9.1
- Nuclear models
 QMD (Quantum Molecular Dynamics)

Targets

- Cylindrical
- Head phantom

2 trackers

- $10 \times 10 \text{ cm}^2$ pixelized detectors (CMOS)
Reconstruction

Basic reconstruction

- Line intersection
- Segment S: the smallest distance between trajectories
- Vertex location: middle of S

Future reconstruction

- Most Likely Path
Simulation validations: nuclear reactions

Experimental setup

Results

<table>
<thead>
<tr>
<th></th>
<th>Beam energy (MeV)</th>
<th>Target thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our experiments</td>
<td>GSI</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>GANIL</td>
<td>95</td>
</tr>
<tr>
<td>Gunzert-Marx et al.</td>
<td>200</td>
<td>128</td>
</tr>
</tbody>
</table>

• Good overall agreement for $E \leq 200$ MeV
Depth profile of generated vertices

- **Generated vertex distribution** (Primary and secondary)

- **Vertex yield** \((^{12}\text{C}. \text{mm})^{-1} \) (10^2)

- **Dose** (a. u.)

- **Target depth (mm)**

- **200 MeV/u \(^{12}\text{C}\)**

- **PMMA target**

- **100 mm**

- **Secondary vertices**

- **Primary vertices**

- **Important contribution**

- **Contrast**

 Relatively low: 1.3

Key Points

- **Secondaries**

 Important contribution

Interaction Vertex Imaging (IVI) for carbon ion therapy monitoring
Depth profile of reconstructed vertices

Generated Vertex

- **Vertex yield (12C mm)$^{-1}$**
 - 10^{-2}
 - 10^{-3}
 - 10^{-4}
 - 10^{-5}

- **Target depth (mm)**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100

Dose (a. u.)
- 0.01
- 0.1
- 1

Imaging technique
- "Single proton" \Rightarrow higher statistics

Contrast
- Promising (\sim 5)
Ion-range influence

Vertex Yield vs ion-range

- Strong dependence

Fit function

\[y = a + b \text{erf}(x - IPP) \]

\(IPP \): Inflection-Point Position
Ion-range resolution

Standard deviation of IPP

Number of incident ions vs. Standard deviation of (mm)

- Homogeneous target
- Millimetric resolution on a pencil-beam basis (10^5 ions)

Beam energy: 200 MeV/u
Conclusion

Feasibility study

- Geant4 9.1 (validated against experimental data)
- Elementary vertex reconstruction

Main results

- “Single-proton” imaging choice
- Real-time ion range verification (on a pencil-beam basis)

Henriquet et al., submitted to PMB
Perspectives

Detailed study of inhomogeneity influences

- IVI sensitivity to inhomogeneities at the end of ion path
 (low probability of proton escape)
- Inhomogeneities in the “exit channel material”

In-beam tests with CMOS detectors

- Low and high energies
 - GANIL (95 MeV/u)
 - HIT (200-300 MeV/u)
- Analysis in progress